Helloworld example post.
This is just a “helloworld” example post. Stay tuned for my first real posts. Coming soon!
It shows how pseudocode for the quicksort algorithm is rendered by pseudocode.
```pseudocode
% This quicksort algorithm is extracted from Chapter 7, Introduction to Algorithms (3rd edition)
\begin{algorithm}
\caption{Quicksort}
\begin{algorithmic}
\PROCEDURE{Quicksort}{$$A, p, r$$}
\IF{$$p < r$$}
\STATE $$q = $$ \CALL{Partition}{$$A, p, r$$}
\STATE \CALL{Quicksort}{$$A, p, q - 1$$}
\STATE \CALL{Quicksort}{$$A, q + 1, r$$}
\ENDIF
\ENDPROCEDURE
\PROCEDURE{Partition}{$$A, p, r$$}
\STATE $$x = A[r]$$
\STATE $$i = p - 1$$
\FOR{$$j = p$$ \TO $$r - 1$$}
\IF{$$A[j] < x$$}
\STATE $$i = i + 1$$
\STATE exchange
$$A[i]$$ with $$A[j]$$
\ENDIF
\STATE exchange $$A[i]$$ with $$A[r]$$
\ENDFOR
\ENDPROCEDURE
\end{algorithmic}
\end{algorithm}
```
This is generated:
% This quicksort algorithm is extracted from Chapter 7, Introduction to Algorithms (3rd edition)
\begin{algorithm}
\caption{Quicksort}
\begin{algorithmic}
\PROCEDURE{Quicksort}{$$A, p, r$$}
\IF{$$p < r$$}
\STATE $$q = $$ \CALL{Partition}{$$A, p, r$$}
\STATE \CALL{Quicksort}{$$A, p, q - 1$$}
\STATE \CALL{Quicksort}{$$A, q + 1, r$$}
\ENDIF
\ENDPROCEDURE
\PROCEDURE{Partition}{$$A, p, r$$}
\STATE $$x = A[r]$$
\STATE $$i = p - 1$$
\FOR{$$j = p$$ \TO $$r - 1$$}
\IF{$$A[j] < x$$}
\STATE $$i = i + 1$$
\STATE exchange
$$A[i]$$ with $$A[j]$$
\ENDIF
\STATE exchange $$A[i]$$ with $$A[r]$$
\ENDFOR
\ENDPROCEDURE
\end{algorithmic}
\end{algorithm}
Super cool! :-)